

UNIVERSITY OF JAMMU

(NAAC ACCREDITED 'A' GRADE' UNIVERSITY) Baba Sahib Ambcdkar Road, Jammu-180006 (J&K)

Academic Section Email: <u>academicsectionju14@gmail.com</u>

CORRIGENDUM

			Please Read	Instead of		
	Semester	Co	urse Code/Title	Cou	rse Code/Title	
BCA (Web Techonolgy)	Semester-I	UMJCST101 UMICST102 UMDCST103 USECST104	Web Designing Computer Fundamentals World Wide Web and Internet PC Software: Installation and Troubleshooting	UMJBCT101 UMIBCT102 UMDBCT103 USEBCT104	Web Designing Computer Fundamentals World Wide Web and Internet PC Software: Installation and Troubleshooting	
	Semester-II	UMJCST201 UMICST202	Scripting Language Web Programming using PHP	UMJBCT201 UMIBCT202	Scripting Language Web Programming using PHP	
		UMDCST203 USECST204	Introduction to Web Designing Cyber Security	UMDBCT203 USEBCT204	Introduction to Web Designing Cyber Security	
BCA (Data Science)	Semester-I	UMJCST131 UMICST132 UMDCST133 USECST104	Problem Solving using C Data Science Basics Data Mining and Data Warehousing PC Software: Installation and Troubleshooting	UMJBCT131 UMIBCT132 UMDBCT133 USEBCT104	Problem Solving using C Data Science Basics Data Mining and Data Warehousing PC Software: Installation and Troubleshooting	
	Semester-II	UMJCST231 UMICST232 UMDCST233 USECST204	Introduction to Data Science Python Programming Introduction to Machine Learning Cyber Security	UMJBCT231 UMIBCT232 UMDBCT233 USEBCT204	Introduction to Data Science Python Programming Introduction to Machine Learning Cyber Security	
BCA (Software Development)	Semester-1	UMJCST161 UMICST162 UMDCST163 USECST104	Programming Paradigms & C Language Computer Fundamentals and PC Software Computer Fundamentals PC Software: Installation and Troubleshooting	UMJBCT161 UMIBCT162 UMDBCT163 USEBCT104	Programming Paradigms & C Language Computer Fundamentals and PC Software Computer Fundamentals PC Software: Installation and Troubleshooting	

UNIVERSITY OF JAMMU

(NAAC ACCREDITED 'A GRADE' UNIVERSITY) Baba Sahib Ambedkar Road, Jammu-180006 (J&K)

Academic Section Email: <u>academicsectionju14@gmail.com</u>

UMICST262Python ProgrammingUMIBCT262Python ProgrammingUMDCST263C-ProgrammingUMIBCT263C-ProgrammingUSECST204Cyber SecurityUSEBCT204Cyber Security		Semester-II	UMJCST261 UMICST262 UMDCST263 USECST204	Data and File Structures using C Language Python Programming C-Programming Cyber Security	UMJBCT261 UMIBCT262 UMDBCT263 USEBCT204	Data and File Structures using C Language Python Programming C-Programming Cyber Security
--	--	-------------	--	---	--	---

as already notified vide notification No. F.Acd/II/22/9306-9345 dated 07.11.2022 in the Syllabi and Courses of Studies of semester Ist and IInd for Four Year Under Graduate Programme of Bachelor of Computer Applications (FYUGP-BCA) under the Choice Based Credit System as per NEP-2020 (as given in the Annexure)

Sd/-DEAN ACADEMIC AFFAIRS

No. F. Acd/II/22/10245-10255' Dated: 07-12-2022Copy for information and necessary action to:

- 1. Dean, Faculty of Mathematical Science
- 2. HOD/Convener, Board of Studies in Computer Science & IT
- 3. All members of the Board of Studies
- 4. C.A to the Controller of Examinations
- 5. Director, Computer Centre, University of Jammu
- 6. Asst. Registrar (Conf. /Exams. UG)
- 7. Incharge, University Website for necessary action please.

Deputy Registrar (Academic)

Bachelor of Computer Applications (BCA)

SYLLABUS

Four Year Undergraduate Programme As per NEP 2020 guidelines Under Choice based Credit System

FOR THE STUDENTS TO BE ADMITTED IN THE SESSIONS 2022-23, 2023-24, 2024-25

Bar

Course Details for Four Year UG Programme

3. NO.	COURSES - COURSES	DISCIPLINES	
1	Computer Applications (CA)- Arts & Science	Natural Science and Arts & Humanities	
2	Information Technology (IT)- Arts & Science	Natural Science and Arts & Humanities	
3	Bachelor of Computer Applications (BCA)		
	BCA (Web Technology)	Computer	
	BCA (Data Science)	Applications (for BCA degree)	
	BCA (Software Development)		

Ju-

DATA SCIENCE

SCHEME

Four Year Undergraduate Programme As per NEP 2020 guidelines Under Choice based Credit System

FOR THE STUDENTS TO BE ADMITTED IN THE SESSIONS 2022-23, 2023-24, 2024-25

Ja

.

COURSES OF STUDY Semester-I

S.	Course	Course No.	Course	Credits	Marks		······································		Total
INO.	Туре		Title		Theory		Practical/Tutorial		Marks
					Mid Semester	End Exam	Assessment	Exam	-
1	Major	UMJCST131	Problem Solving using C	4(3L+1P)	15	60	10	15	100
2	Minor	UMICST132	Data Science	4(31+1P)	15	60	10		
		χ.	Basics		15	00		15	100
3	MD	UMDCST133	Data Mining and Data Warehousing	3	15	60	NA	NA	75
4	SEC	USECST104	PC Software: Installation and Troubleshootin g	2	10	40	NA	NA	50

Semester-II

5. No	No. Type	Course No.	Course	Credits	Marks					
140.			Title	The	Theory		Practical/Tutorial		Marks	
					Mid Semester	End Exam	Assessment	Exam		
1	Major	UMJCST231	Introduction to Data Science	4(3L+1P)	15	60	10	15	100	
2	Minor	UMICST232	Python Programming	4(3L+1P)	15	60	10	15	100	
3	MD	UMDCST233	Introduction to Machine Learning	3	15	60	NA	NA	75	
1	SEC	USECST204	Cyber Security	2	10	40	NA	NA	50	
							Rov	/		

BCA (Data Science) - FIRST SEMESTER

Covrse: Major Course Credits: (L-P-T) (3-1-0) Total marks: 100

Course Title: Problem Solving using C Course Code: UMJCST131 Mid Semester assessment: 15 Marks of 1.5 hours duration End Semester assessment: 60 Marks of 3.0 hours duration Practical: 25 Marks

For examinations to be held in Dec 2022, 2023 and 2024

Course objectives & learning outcomes:

- 1. To learn the fundamentals of programming language.
- 2. To understand the concept of different control structures.
- 3. To learn about different data structures
- 4. To understand the concept of procedural programming.

UNIT – I

Algorithm, Flowcharts, Flowchart Symbols, Flowchart Rules, Assemblers, Compilers and Interpreters, Pseudo Code, Introduction to C programming, Character Set, C Tokens, Keywords and Identifiers, Constants, Variables, Data Types, Format of C program, Arithmetic, Relational & Logical Operators, Assignment Operators, Increment & Decrement Operators, Operator Precedence & Associativity. 15 Hours

UNIT – II

Formatted Input, Formatted Output, escape sequences, Conditional Statements: if Statement, if...... else Statement, Nested if....else Statements, Switch Statement, conditional Operator, Goto Statement, loops- for loop, while loop, do-while loop, break and continue statement. 15 Hours

UNIT – III

Qualifiers, Storage classes, Pointers definition, Declaring Pointer Variables, using pointer variable, Arrays: One, Two and Multi Dimension Arrays, Initialization of one and two dimensional Arrays, Declaring and Initializing String Variables, String Handling Functions. 15 Hours

UNIT – IV

Preprocessor directives, Function Definition, Function Calls (call by value & call by address method) Returning Value, Types of Functions, Recursion, Passing Arrays to Functions, Macros, Defining Structure, Declaring and Accessing Structure Variables, Structures and Unions, Basics of File Handling and operations like open, close, read, write etc. Enumerations. 15 Hours

Suggested readings/ references:

1. E. Balaguruswami, Programming in C, PHI

- 2. Gottfried. B, Theory and problems of Programming with C Language, Tata Mc Graw Hill.
- 3. Kenneth. A, C Problem Solving and Programming, PHI.
- 4. Dan Gookin, C Programming, Wiley Dreamtech.
- 5. Y. P. Kanetkar, Understanding Pointers in C, BPB Publications.
- 6. Shubhnandan S. Jamwal, Programming in C, Pearson Publications.
- 7. H.M. Deitel and P.J. Deitel, C How to Program, PHI.

Ka

University of Jammu

BCA (Data Science) - FIRST SEMESTER

Course: Major Course Credits: (L-P-T) (3-1-0) Total marks: 100

Course Title: Problem Solving using C Course Code: UMJCST131 Mid Semester assessment: 15 Marks of 1.5 hours duration End Semester assessment: 60 Marks of 3.0 hours duration Practical: 25 Marks

For examinations to be held in Dec 2022, 2023 and 2024

NOTE FOR PAPER SETTERS FOR EXAMINATIONS -

The question paper will be divided into the following two sections. No question will be repeated in the question paper.

Section A shall consist Four (4) short answer questions having one question from each unit. The students are required to attempt all questions. Each question shall be of 3 Marks.

 $(4 \times 3 = 12 \text{ marks})$

10 marks

15 Marks

Section B shall consist Eight (8) long answer questions having two questions from each unit. The students are required to attempt one question from each unit. Each question shall be of 12 Marks.

Note: -The paper setter shall ensure that the questions are uniformly distributed over entire syllabus. $(4 \times 12 = 48 \text{ marks})$

Practical/tutorial Evaluation

Daily evaluation of practical's/tutorials/Viva voce/Records etc.

Final Examination

Pattern for external practical examination

Practical file	5 Marks
Written examination	5 Marks
Viva-Voce	5 Marks
Total	15 Marks

Pattern for external tutorial examination

Assignment file	10 Marks
Viva-Voce	5 Marks
Total	15 Marks

bar

15 Hours

BCA (Data Science) - FIRST SEMESTER

Course: Minor Course Credits: (L-P-T) (3-1-0) Total marks: 100

Course Title: Data Science Basics Course Code: UMICST132 Mid Semester assessment: 15 Marks of 1.5 hours duration End Semester assessment: 60 Marks of 3.0 hours duration Practical: 25 Marks

For examinations to be held in Dec 2022, 2023 and 2024

Course objectives & learning outcomes:

- 1. Introduction to basics of data science.
- 2. Understanding the concepts of data mining.
- 3. To learn about functioning of machine learning techniques.
- 4. Understanding the concepts of data visualizations.

UNIT-I

Introduction to Data Science: Definition, benefits and uses of data science and big data.

Facets of Data: Structured data, unstructured data, natural language, machine generated data, network data, audio, images and video streaming data.

Data science process: overview of data science process, defining the goal, retrieving data, data preparation, data exploration, build the models. 15 Hours

UNIT-II

DATA: Definition, characteristics of data, classification of digital data.

The Data Science Fundamentals: Distributed file system, data integration framework, machine learning framework, system deployment, security.

Data Mining: definition, languages for data science, collection data-hunting, logging, scraping, cleaning.

UNIT-III

Machine Learning: Definition, Applications of machine learning in data science, Types ofMachineLearningsupervisedlearning,semisupervisedlearning,un-supervisedlearning, Linear regression, Decision tree classifier, Bayes - Naive bayes

UNIT-IV

Data Visualization: Definition, importance of data visualization in data science, ExploratoryDataanalysisconfrontingnewdataset,visualizationtools,developingavisualizationaesthetic- maximizing data link ratio Chart Types: Tabular data, dot and line plots, scatter plots, bar plots and pie charts. 15 Hours

Suggested readings/ references:

1. Davy Cielen , Arno D.B.Meysman and Mohamed Ali, "Introducing Data Science", Published by Manning

- 2. Steven S.Skiena, "The Data Science Design Manual", Published by Springer Nature.
- 3. Cathy O'Neil and Rachel Schutt, "Doing Data Science, Straight Talk from the Frontline", O'Reilly.
- 4. Jure Leskovek, AnandRajaraman and Jeffrey D.Ullman, "Mining of Massive Datasets", Cambridge University Press.

Jw/

University of Jammu

BCA (Data Science) - FIRST SEMESTER

Course: Minor Course Credits: (L-P-T) (3-1-0) Total marks: 100

Course Title: Data Science Basics Course Code: UMICST132 Mid Semester assessment: 15 Marks of 1.5 hours duration End Semester assessment: 60 Marks of 3.0 hours duration Practical: 25 Marks

For examinations to be held in Dec 2022, 2023 and 2024

NOTE FOR PAPER SETTERS FOR EXAMINATIONS -

The question paper will be divided into the following two sections. No question will be repeated in the question paper.

Section A shall consist Four (4) short answer questions having one question from each unit. The students are required to attempt all questions. Each question shall be of 3 Marks.

 $(4 \times 3 = 12 \text{ marks})$

Section B shall consist Eight (8) long answer questions having two questions from each unit. The students are required to attempt one question from each unit. Each question shall be of 12 Marks.

Note: -The paper setter shall ensure that the questions are uniformly distributed over entire syllabus. $(4 \times 12 = 48 \text{ marks})$

Practical/tutorial Evaluation

Daily evaluation of practical's/tutorials/Viva voce/Records etc.

Final Examination

Pattern for external practical examination

5 Marks
5 Marks
5 Marks
15 Marks

Pattern for external tutorial examination

Assignment file	10 Marks
Viva-Voce	5 Marks
Total	15 Marks

bu

10 marks

15 Marks

BCA (Data Science) – FIRST SEMESTER

Course:	Multidisciplinary Foundation Courses (MD)
Course Credits:	(L-P-T)
•	(3-0-0)
Total marks:	75

Course Title: Data Mining and Data Warehousing Course Code: UMDCST133 Mid Semester assessment: 15 Marks of 1.5 hours duration End Semester assessment: 60 Marks of 3.0 hours duration

For examinations to be held in Dec 2022, 2023, and 2024

Course objectives & learning outcomes:

- 1. Ability to understand the types of the data to be mined and present a general classification of tasks and primitives to integrate a data mining system.
- 2. Extract interesting patterns from large amounts of data.
- 3. Discover the role played by data mining in various fields.
- 4. Choose and employ suitable data mining algorithms to build analytical applications

UNIT-I

Data Mining: Data and Types of Data, Data Mining Functionalities. Interestingness, Patterns– Classification of Data Mining systems, Data mining Task primitives, Major issues in Data Mining–Data Preprocessing.

10 Hours

UNIT-II

Data Warehouse and OLAP Technology for Data Mining: Introduction to Data Warehouses, Differences between Operational Database Systems and Data Warehouses, Multidimensional Data Model, Three-tier Data Warehouse Architecture, Schemas -Stars, Snowflakes and Fact Constellations.

10Hours

UNIT-III

Classification: Classification and Prediction, Basic concepts, Decision tree induction, Bayesian classification, Rule-based classification, Lazy learner. 10Hours

UNIT-IV

Clustering and Applications: Cluster analysis, Types of Data in Cluster Analysis, Categorization of Major Clustering Methods, Partitioning Methods, Hierarchical Methods, Density–Based Methods, Grid–Based Methods, Outlier Analysis. 15 Hours

- 1. JiaweiHan&MichelineKamber, "DataMining-ConceptsandTechniques-, 3rdEdition", Elsevier.
- 2. MargaretHDunham, "DataMiningIntroductoryand Advancedtopics" PEA.
- 3. Ian H.Witten and EibeFrank, "DataMining:Practical Machine Learning Toolsand Techniques," Morgan Kaufmann.

bar

BCA (Data Science) - FIRST SEMESTER

Course:Multidisciplinary Foundation Courses (MD)Course Credits:(L-P-T)(3-0-0)75

Course Title: Data Mining and Data Warehousing Course Code: UMDCST133 Mid Semester assessment: 15 Marks of 1.5 hours duration End Semester assessment: 60 Marks of 3.0 hours duration

For examinations to be held in Dec 2022, 2023, and 2024

NOTE FOR PAPER SETTERS FOR EXAMINATIONS -

The question paper will be divided into the following two sections. No question will be repeated in the question paper.

Section Ashall consist Four (4) short answer questions having one question from each unit. The students are required to attempt all questions. Each question shall be of 3 Marks.

 $(4 \times 3 = 12 \text{ marks})$

Section Bshall consist Eight (8) long answer questions having two questions from each unit. The students are required to attempt one question from each unit. Each question shall be of 12 Marks.

 $(4 \times 12 = 48 \text{ marks})$

Note: -The paper setter shall ensure that the questions are uniformly distributed over entire syllabus.

Ju

BCA (Data Science) – FIRST SEMESTER

Ciairse:	Skill Enhancement Course (SEC)
Course Credits:	(L-P-T)
	(2-0-0)
Total marks:	50

Course Title: PC Software: Installation and Troubleshooting Course Code: USECST104 Mid Semester assessment: 10 Marks of 1.5 hours duration

End Semester assessment: 40 Marks of 2.5 hours duration

For examinations to be held in Dec 2022, 2023, and 2024

Course objectives & learning outcomes:

- 1. To provide knowledge about the PC Hardware.
- 2. To brief about different utilities and PC settings.
- 3. To develop the ability to configure, setup and troubleshoot PC.

UNIT -I

Introduction to PC Hardware: Study of basic I/O systems, Types of Memories- Static RAM and Dynamic RAM, ROM, PROM, EPROM, EEPROM, External Storage Devices, CPU (Central Processing Unit)- ALU and control, Motherboard and Processor :Types of Processor, System performance Motoring. 10 Hours

UNIT -II

BIOS Configuration: Study of BIOS Set-up- Advance set-up, Boot configuration, Boot Menu, Installation of Operating System (Windows), Control panel, Installation and uninstallation of application software, Setting System Date and Time, Hard Disk: Formatting of Hard disk, Partitioning of Hard disk in different logical drives, Defragmenting Hard disk using defrag, Scan Disk for checking disk space, Disk clean up, Scan disk, Installation of Device Drivers: Different types of Motherboard drivers: Network, Audio, and Graphics, Modem. Display Settings: Resolution, Themes, multiple displays, Projector Set up. 10 Hours

UNIT-III

Configuration of External devices: Physical set-up of Printers- Performing test print out, Printing of document etc, Scanner set-up, Webcam, Bluetooth device, Memory card reader, Diagnostic and troubleshooting of PC: POST (Power on Self Test), Maintenance of PC, Error messages, Task Manager. Concept of compression Compression Utilities: WinZip, PKZIP, files recovery, Antivirus, CD/DVD Writing Software, Concept of Virtual drives and Image files (ISO).

- 1. Mark Minasi, "The complete PC Upgrade & Maintenance Guide", BPB Publications.
- 2. D Balasubramanian, "Computer Installation and Servicing", Tata McGraw Hill Education.
- 3. Robert C. Brenner, "Trouble Shooting and Repair Guide", BPB Publications.
- 4. Scott Mueller, "Upgrading and Repairing PC's", PHI Publications, Fourth Edition.
- 5. Adane Nega Tarekegn, "A Simple Guide to Computer Maintenance and Troubleshooting", LAP LAMBERT Academic Publishing.
- 6. James Karney, "Upgrade & Maintain Your PC", M & T Books; 2nd edition.

Ju

BCA (Data Science) – FIRST SEMESTER

Course:Skill Enhancement Course (SEC)Course Credits:(L-P-T)
(2-0-0)Total marks:50

Course Title: PC Software: Installation and Troubleshooting Course Code: USECST104 Mid Semester assessment: 10 Marks of 1.5 hours duration End Semester assessment: 40 Marks of 2.5 hours duration

For examinations to be held in Dec 2022, 2023, and 2024

NOTE FOR PAPER SETTERS FOR EXAMINATIONS -

The question paper will be divided into the following two sections. No question shall be repeated in the question paper.

Section A shall consist Four (4) short answer questions (at least one from each unit). The students are required to attempt all questions. Each question shall be of 2½ Marks.

 $(4 \times 2\frac{1}{2} = 10 \text{ marks})$

Section B shall consist Six (6) long answer questions (two from each unit). The students are required to attempt three questions. Each question shall be of 10 Marks.

 $(3 \times 10 = 30 \text{ marks})$

Note: The paper setter shall ensure that the questions are uniformly distributed over entire syllabus.

(In-

Maior Course: Course Credits: (L-P-T) (3-1-0)Total marks: 100

Course Title: Introduction to Data Science Course Code: UMICST231 Mid Semester assessment: 15 Marks of 1.5 hours duration End Semester assessment: 60 Marks of 3.0 hours duration Practical: 25 Marks

For examinations to be held in May 2023, 2024 and 2025

Course objectives & learning outcomes:

- 1. Introduction to basics of data science.
- 2. Understanding the concepts of data mining.
- 3. To learn about functioning of machine learning techniques.
- 4. Understanding the concepts of data visualizations.

UNIT-I

Introduction to Data Science: Definition, benefits and uses of data science and big data.

Facets of Data: Structured data, unstructured data, natural language, machine generated data, network data, audio, images and video streaming data.

Data science process: overview of data science process, defining the goal, Retrieving data, data preparation, data exploration, build the models, cleaning and transforming data, presentation and automation.

15 Hours

UNIT-II

DATA: Definition, characteristics of data, classification of digital data.

The Data Science Fundamentals: Distributed file system, data integration framework, machine learning framework, system deployment, security.

Data Mining: definition, languages for data science, collection data-hunting, logging ,scraping, cleaning dataerrors. artifacts, data compatibility, dealing with missing values, outlier detection. 15 Hours

UNIT-III

Machine Learning: Definition, Applications of machine learning in data science. Types of Machine Learningsupervised learning, semi supervised learning, un-supervised learning, Linear regression, Decision tree classifier, Bayes - Naive bayes 15 Hours

UNIT-IV

Data Visualization: Definition, importance of data visualization in data science, Exploratory Data analysisconfronting new dataset, visualization tools, developing a visualization aesthetic-maximizing data link ratio. proper scaling and labeling, effective use of color and shading, the power of repetition. 15 Hours

Chart Types: Tabular data, dot and line plots, scatter plots, bar plots and pie charts.

- 1. Davy Cielen, Arno D.B.Meysman and Mohamed Ali, "Introducing Data Science", Published by Manning
- 2. Steven S. Skiena, "The Data Science Design Manual", Published by Springer Nature.
- 3. Cathy O'Neil and Rachel Schutt, "Doing Data Science, Straight Talk from the Frontline", O'Reilly.
- 4. Jure Leskovek, Anand Rajaraman and Jeffrey D.Ullman, "Mining of Massive Datasets", Cambridge University Press.

Ya

Course: Major Course Credits: (L-P-T) (3-1-0) Total marks: 100 Course Title: Introduction to Data Science Course Code: UMJCST231 Mid Semester assessment: 15 Marks of 1.5 hours duration End Semester assessment: 60 Marks of 3.0 hours duration Practical: 25 Marks

For examinations to be held in May 2023, 2024 and 2025

NOTE FOR PAPER SETTERS FOR EXAMINATIONS -

The question paper will be divided into the following two sections. No question will be repeated in the question paper.

Section A shall consist Four (4) short answer questions having one question from each unit. The students are required to attempt all questions. Each question shall be of 3 Marks.

 $(4 \times 3 = 12 \text{ marks})$

10 marks

15 Marks

Section B shall consist Eight (8) long answer questions having two questions from each unit. The students are required to attempt one question from each unit. Each question shall be of 12 Marks.

Note: -The paper setter shall ensure that the questions are uniformly distributed over entire syllabus. $(4 \times 12 = 48 \text{ marks})$

Practical/tutorial Evaluation

Daily evaluation of practical's/tutorials/Viva voce/Records etc.

Final Examination

Pattern for external practical examination

Practical file	5 Marks
Written examination	5 Marks
Viva-Voce	5 Marks
Total	15 Marks

Pattern for external tutorial examination

Assignment file	10 Marks
Viva-Voce	5 Marks
Total	15 Marks

Ja-

Course: Minor Course Credits: (L-P-T) (3-1-0) Total marks: 100

Course Title: Python Programming Course Code: UMICST232 Mid Semester assessment: 15 Marks of 1.5 hours duration End Semester assessment: 60 Marks of 3.0 hours duration Practical: 25 Marks

For examinations to be held in May 2023, 2024 and 2025

Course objectives & learning outcomes:

- 1. Provide in-depth knowledge of developing and debugging Python Programs.
- 2. Illustrate and manipulate core data structures like Lists, Dictionaries, Tuples, and Strings.
- 3. Understand the concept of files and exception handling

UNIT-I

Introduction: Basic concepts: Functional Programming, OOPS and Data Structures Getting Started: Running Code in the Interactive Shell, Input, Processing and Output, Editing, Saving and Running a Script, Working of Python. Variables, Expressions and Statements: Values and Data Types, Variables, Keywords, String Literals, Escape Sequences, Operators and Operands, Expressions and Statements, Interactive mode and Script mode, Order of Operations, Comments. 15 Hours

UNIT-II

Conditional Statements and Loops: Modulus Operator, Boolean Expressions, Logical Operators, Conditional Execution "if statement", Alternative Execution "else clause", Chained Conditionals "elif clause", Nested Conditionals, while statement, For loop, Break and Continue Statement. 15 Hours

UNIT-III

Functions Function Calls, Type Conversion Functions, Math Functions, Composition, Adding new functions, Importing modules with "from", Recursion, Stack Diagram for Recursive Functions.

String Functions-Traversal, Comparison, Searching, Counting, Pre-defined String Functions. 15 Hours

UNIT-IV

Lists, Dictionaries and Tuples: Lists- List as a Sequence, Traversing a list, List Operations, List Slices, List Methods, Map, filter and Reduce, Deleting Elements, Lists and Strings.

Dictionaries-Dictionary as a set of counters, Looping and Dictionaries, Reverse Look Up, Dictionaries and Lists. Tuples-Tuple Assignment, Tuples as return values, Variable Length argument tuples, Lists and Tuples, Dictionaries and Tuples. 15 Hours

Suggested readings/ references:

1. Allen B. Downey, "Think Python", O'Reilly, Sebastopol, California.

- 2. Aditya Kanetkar and Yashavant Kanetkar, "Let us Python", BPB publications.
- 3. John Zelle, "Python Programming: An Introduction to Computer Science", Franklin, Beedle & AssociatesInc.
- 4. Martin C. Brown., "Python: The Complete Reference", McGraw Hill.
- 5. Harsh Bhasin, "Python for beginners", New age international ltd

5~/

Course: Minor Course Credits: (L-P-T) (3-1-0) Total marks: 100

Course Title: Python Programming Course Code: UMICST232 Mid Semester assessment: 15 Marks of 1.5 hours duration End Semester assessment: 60 Marks of 3.0 hours duration Practical: 25 Marks

For examinations to be held in May 2023, 2024 and 2025

NOTE FOR PAPER SETTERS FOR EXAMINATIONS –

The question paper will be divided into the following two sections. No question will be repeated in the question paper.

Section A shall consist Four (4) short answer questions having one question from each unit. The students are required to attempt all questions. Each question shall be of 3 Marks.

 $(4 \times 3 = 12 \text{ marks})$

10 marks

15 Marks

Section B shall consist Eight (8) long answer questions having two questions from each unit. The students are required to attempt one question from each unit. Each question shall be of 12 Marks.

Note: -The paper setter shall ensure that the questions are uniformly distributed over entire syllabus. $(4 \times 12 = 48 \text{ marks})$

Practical/tutorial Evaluation

Daily evaluation of practical's/tutorials/Viva voce/Records etc.

Final Examination

Pattern for external practical examination

Due ett - 1 Cl	
Practical file	5 Marks
Written examination	5 Marks
Viva-Voce	5 Marks
Total	15 Marks

Pattern for external tutorial examination

Assignment file	10 Marks
Viva-Voce	5 Marks
Total	15 Marks

bar

Course:	Multidisciplinary Foundation Courses (MD)
Course Credits:	(L-P-T)
	(3-0-0)
Total marks:	75

Course Title: Introduction to Machine Learning Course Code: UMDCST233 Mid Semester assessment: 15 Marks of 1.5 hours duration End Semester assessment: 60 Marks of 3.0 hours duration

For examinations to be held in May 2023, 2024 and 2025

Course objectives & learning outcomes:

- 1. To understand the concepts of Machine Learning.
- 2. Understanding the real world applications of classification.
- 3. To understand complexity of Machine Learning algorithms and their limitations.
- 4. Analyzing various machine learning algorithms.

UNIT-I

Introduction, Types of machine learning: supervised, unsupervised, semi-supervised and reinforcement learning,Machine learning model, Steps in the design of learning system, Challenges in machine learning, Applications of machine learning.

UNIT-II

Labelled data, Introduction to classification and its types, Statistical summary of data, Data pre-processing, Normalization, Training and Testing, Cross Validation, Steps in building a classifier in python.Classification algorithms: K-nearest neighbor, Support vector machine, Decision tree, etc., Classification evaluation metrics

10HOURS

UNIT-III

Feature Selection: Introduction and its importance, Feature selection techniques, Principal component analysis.Unlabeled data, Introduction to clustering and its applications, Cluster formation methods, K-means algorithm, Hierarchical clustering, etc.

10HOURS

UNIT-IV

Overfitting, Underfitting, Bias and Variance, Imbalanced dataset and its handling, Hyper-parameter tuning, Ensemble methods: Bagging and Boosting, Ensemble voting. 15 HOURS

- 1. Manohar Swamynathan "Mastering Machine Learning with Python in Six Steps", Apress.
- 2. Machine Learning, "A Probabilistic Perspective", MIT Press, 2012 by Kevin Murphy.
- 3. Shai Shalev-Shwartz, Shai Ben-David, "Understanding Machine Learning: From Theory to Algorithms".
- 4. Mark Summerfield, "Programming in python 3: A Complete Introduction to Python Programming".
- 5. Tim Hall and J-P Stacey, "Python 3 for Absolute Beginners", 2009

Ja/

BCA (Data Science) - SECOND SEMESTER

Course:Multidisciplinary Foundation Courses (MD)Course Credits:(L-P-T)
(3-0-0)Total marks:75

Course Title: Introduction to Machine Learning Course Code: UMDCST233 Mid Semester assessment: 15 Marks of 1.5 hours duration End Semester assessment: 60 Marks of 3.0 hours duration

For examinations to be held in May 2023, 2024 and 2025

NOTE FOR PAPER SETTERS FOR EXAMINATIONS -

The question paper will be divided into the following two sections. No question will be repeated in the question paper.

Section Ashall consist Four (4) short answer questions having one question from each unit. The students are required to attempt all questions. Each question shall be of 3 Marks.

 $(4 \times 3 = 12 \text{ marks})$

Section Bshall consist Eight (8) long answer questions having two questions from each unit. The students are required to attempt one question from each unit. Each question shall be of 12 Marks.

 $(4 \times 12 = 48 \text{ marks})$

Note: -The paper setter shall ensure that the questions are uniformly distributed over entire syllabus.

ĵ

par

Course:	Skill Enhancement Course (SEC)
Course Credits:	(L-P-T)
	(2-0-0)
Total marks:	50

Course Title: Cyber Security Course Code: USECST204 Mid Semester assessment: 10 Marks of 1.5 hours duration End Semester assessment: 40 Marks of 2.5 hours duration

For examinations to be held in May 2023, 2024 and 2025

Course objectives & learning outcomes:

- 1. To provide knowledge about the PC Hardware.
- 2. To brief about different utilities and PC settings.
- 3. To develop the ability to configure, setup and troubleshoot PC.

UNIT –I

Cyberspace, Architecture of cyberspace, Internet, World Wide Web, Advent of internet, Internet infrastructure for data transfer and governance, Internets ociety, Regulation of cyberspace, Concept of cyber security, Issues and challenges of cyber security.

Classification of cyber crimes, Common cyber crimes-cyber crime targeting computers and mobiles, cyber crime against women and children, financial frauds, social engineering attacks, malware and ransomware attacks, zero day and zero click attacks. 10 Hours

UNIT -II

Cybercriminals modus-operandi, Reporting of cyber crimes, Remedial and mitigation measures, Legal perspective of cyber crime, IT Act 2000 and its amendments, Cyber crime and offences, Organizations dealing with Cyber crime and Cyber security in India.

Introduction to Social networks, Security issues related to social media, Flagging and reporting of inappropriate content, Laws regarding posting of inappropriate content, Best practices for the use of Social media.

10 Hours

UNIT-III

Definition of E-Commerce, Elements of E-Commerce security, E-Commerce threats, E-Commerce security best practices.

Introduction to digital payments, Digital payments related common frauds and preventive measures. RBI guidelines on digital payments and customer protection in authorized banking transactions

10 Hours

- 1. R. C Mishra, "Cyber Crime Impact in the New Millennium", Auther Press Edition.
- 2. Sumit Belapure and Nina Godbole, "Cyber Security Understanding Cyber Crimes, Computer Forensics and Legal Perspectives", Wiley India Pvt. Ltd.
- 3. Henry A. Oliver, "Security in the Digital Age: Social Media Security Threats and Vulnerabilities", Pearson.
- 4. Elias M. Awad, "Electronic Commerce", Prentice Hall of India Pvt Ltd.
- 5. Kumar K, "Cyber Laws: Intellectual Property & E-Commerce Security", Dominant Publishers.
- 6. Eric Cole, Ronald Krutz, James W. Conley, "Network Security Bible", 2nd Edition, Wiley India Pvt. Ltd.
- 7. E. Maiwald, "Fundamentals of Network Security", McGraw Hill.

W

Course:Skill Enhancement Course (SEC)Course Credits:(L-P-T)
(2-0-0)Total marks:50

Course Title: Cyber Security Course Code: USECST204 Mid Semester assessment: 10 Marks of 1.5 hours duration End Semester assessment: 40 Marks of 2.5 hours duration

For examinations to be held in May 2023, 2024 and 2025

NOTE FOR PAPER SETTERS FOR EXAMINATIONS -

The question paper will be divided into the following two sections. No question shall be repeated in the question paper.

Section A shall consist Four (4) short answer questions (at least one from each unit). The students are required to attempt all questions. Each question shall be of 2½ Marks.

 $(4 \times 2\frac{1}{2} = 10 \text{ marks})$

Section B shall consist Six (6) long answer questions (two from each unit). The students are required to attempt three questions. Each question shall be of 10 Marks.

 $(3 \times 10 = 30 \text{ marks})$

Note: The paper setter shall ensure that the questions are uniformly distributed over entire syllabus.

Jar